Propositional Logic – Exercises for Week 3

1. For each of the arguments from last week's q. 3, (a) translate the premisses and conclusion into propositional notation, giving an appropriate key, and (b) use a truth-table to establish whether the argument is valid, clearly stating your result. Here is (iii) as a worked example:

Key F: Fred played

G: George played

 $\textbf{Translation} \qquad \qquad [\neg F \to \neg G]$

G

 \therefore [F \land G]

Truth-Table

F G	$[\neg F \rightarrow \neg G]$	i] G	$[F \wedge G]$
ТТ	F TF	T	T
ΤF	F TT	\mathbf{F}	${f F}$
FΤ	T F F	T	${f F}$
FF	T T T	\mathbf{F}	${f F}$

There is no line of the truth-table in which the premisses are true and the conclusion is false; the argument is therefore *valid*.

2. Give an example of an argument with a conclusion irrelevant to the premisses, and:

- i. a tautological conclusion.
- ii. an inconsistent set of premisses.

Are the arguments you have just given valid or invalid, given the standard definitions?

3. Draw up truth-tables – partial or complete, as appropriate – for each of the following sentence-functors, and specify which of them, if any, can be interpreted as truth-functors:

i.	ϕ and ψ .	v.	ϕ if and only if ψ .
ii.	ϕ but nevertheless ψ .	vi.	ϕ unless ψ .
iii.	If ϕ then ψ .	vii.	ϕ because ψ .
iv.	ϕ only if ψ .	viii.	If ϕ then ϕ .

Justify any question-marks in your truth-tables by giving two example substitutions with the same 'input' truth-value which nevertheless result in different 'output' truth-values for the compound proposition. Is anything lost in interpreting any of the above as truth-functors?

4. Write out truth-tables for these formulae:

- i. $[P \leftrightarrow Q]$
- ii. $[P \lor [\neg Q \leftrightarrow R]]$
- iii. $[[P \rightarrow R] \rightarrow [[Q \rightarrow R] \rightarrow [[P \lor Q] \rightarrow R]]]$

5. How many rows are there in an n-place truth-table? (E.g. a 2-place truth-table has 4 rows: TT-, TF-, FT-, FF-.) How many different n-place truth-tables does this mean there are?